

PCAS-2TE-11-0.1×0.1-TO8-wZnSeAR-70 — ENGINEERING SAMPLE

Type II superlattice, two-stage thermoelectrically cooled, photoconductive detector

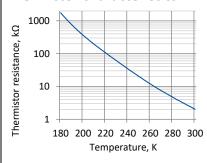
 $\textbf{PCAS-2TE-11-0.1} \times \textbf{0.1-TO8-wZnSeAR-70} \text{ is a Type II superlattice two-stage thermoelectrically cooled IR photoconductor, with the property of the prop$ excellent parameters. Photoconductive detector should operate in optimum bias voltage and current readout mode. Performance at low frequencies is reduced due to 1/f noise. 3° wedged zinc selenide anti-reflection coated window (wZnSeAR) prevents unwanted interference effects. For detection of CW radiation, using of optical chopper system is recommended. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

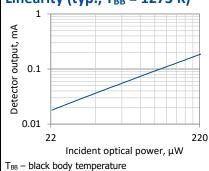
Spectral response $(T_a = 20^{\circ}C)$

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification $(T_a = 20^{\circ}C)$

Parameter	Detector type	
	PCAS-2TE-11-0.1×0.1-TO8-wZnSeAR-70	
Active element material	epitaxial superlattice heterostructure	
Cut-on wavelength λ _{cut-on} (10%), μm	1.6±0.2	
Peak wavelength λ _{peak} , μm	6.0±0.3	
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	12.0±0.3	
Detectivity D*(λ _{peak} , 100 kHz), cm·Hz ^{1/2} /W	~1.9×10 ⁸	
Current responsivity R _i (λ _{peak}), A/W	~1.5	
Time constant τ, ns	~7	
Resistance R, Ω	~55	
Bias voltage V _b , V	typ. 0.5	
1/f noise corner frequency fc, Hz	typ. 100k	
Active element temperature T _{det} , K	~230	
Active area A, mm×mm	0.1×0.1	
Package	TO8	
Acceptance angle Φ	~70°	
Window	wZnSeAR	

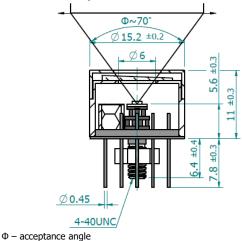

Features

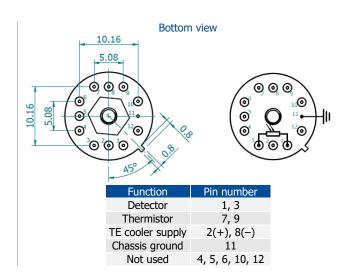

- Wide spectral range from 1.6 to 12.0 µm
- High responsivity
- **Excellent linearity**
- Environmentally friendly

Two-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~230
V _{max} , V	1.3
I _{max} , A	1.2
Omay, W	0.36

Thermistor characteristics



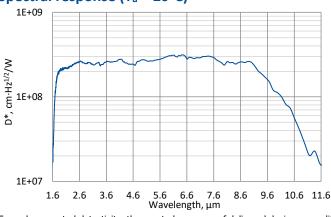


programmable PIP

standard MIP

small SIP-TO8

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.



PCAS-2TE-9-0.1×0.1-T08-wZnSeAR-70 — ENGINEERING SAMPLE

Type II superlattice, two-stage thermoelectrically cooled, photoconductive detector

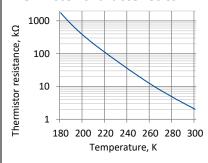
PCAS-2TE-9-0.1×0.1-TO8-wZnSeAR-70 is a Type II superlattice two-stage thermoelectrically cooled IR photoconductor, with excellent parameters. Photoconductive detector should operate in optimum bias voltage and current readout mode. Performance at low frequencies is reduced due to 1/f noise. 3° wedged zinc selenide anti-reflection coated window (wZnSeAR) prevents unwanted interference effects. For detection of CW radiation, using of optical chopper system is recommended. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

Spectral response $(T_a = 20^{\circ}C)$

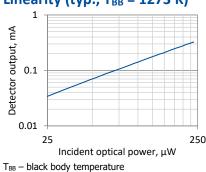
Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification $(T_a = 20^{\circ}C)$

	Debendant box
Parameter	Detector type
	PCAS-2TE-9-0.1×0.1-TO8-wZnSeAR-70
Active element material	epitaxial superlattice heterostructure
Cut-on wavelength λ _{cut-on} (10%), μm	1.6±0.2
Peak wavelength λ _{peak} , μm	6.2±0.3
Cut-off wavelength λ _{cut-off} (10%), μm	11.0±0.3
Detectivity D*(λ _{peak} , 20 kHz), cm·Hz ^{1/2} /W	~2.8×10 ⁸
Current responsivity $R_i(\lambda_{peak})$, A/W	~2.8
Time constant τ, ns	~12
Resistance R, Ω	~95
Bias voltage V _b , V	typ. 0.5
1/f noise corner frequency fc, Hz	typ. 20k
Active element temperature T _{det} , K	~230
Active area A, mm×mm	0.1×0.1
Package	TO8
Acceptance angle Φ	~70°
Window	wZnSeAR


Features

- Wide spectral range from 1.6 to 11.0 µm
- High responsivity
- Excellent linearity
- Environmentally friendly

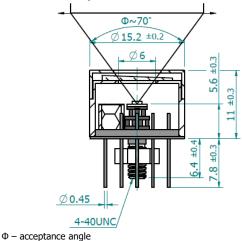

Two-stage thermoelectric cooler parameters

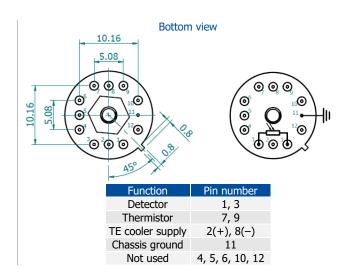
Parameter	Value
T _{det} , K	~230
V_{max} , V	1.3
I _{max} , A	1.2
Omay W	0.36

Thermistor characteristics

Linearity (typ., $T_{BB} = 1273 \text{ K}$)

Distributor


info@amstechnologies.com
www.amstechnologies-webshop.com


amstechnologies meet solutions

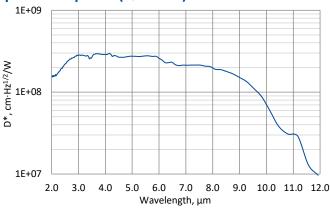
where technologies meet solutions

programmable PIP

standard MIP

small SIP-TO8

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.



PCAS-2TE-9-1×1AR-TO8-wZnSeAR-70 - ENGINEERING SAMPLE

Type II superlattice, two-stage thermoelectrically cooled, photoconductive detector

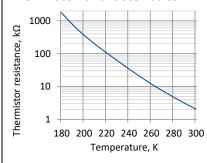
PCAS-2TE-9-1×1AR-TO8-wZnSeAR-70 is a Type II superlattice two-stage thermoelectrically cooled IR photoconductor, with excellent parameters. Photoconductive detector should operate in optimum bias voltage and current readout mode. Performance at low frequencies is reduced due to 1/f noise. Anti-reflection coated applied to active element ($1\times1AR$) and 3° wedged zinc selenide window (wZnSeAR) prevents unwanted interference effects. For detection of CW radiation, using of optical chopper system is recommended. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

Spectral response $(T_a = 20^{\circ}C)$

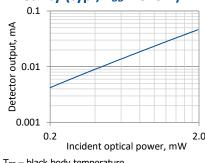
Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification $(T_a = 20^{\circ}C)$

Parameter	Detector type	
	PCAS-2TE-9-1×1AR-TO8-wZnSeAR-70	
Active element material	epitaxial superlattice heterostructure	
Cut-on wavelength λ _{cut-on} (10%), μm	≤2.0	
Peak wavelength λ _{peak} , μm	4.0±0.5	
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	11.0±0.5	
Detectivity D*(λ _{peak} , 300 kHz), cm·Hz ^{1/2} /W	~2.6×10 ⁸	
Current responsivity R _i (λ _{peak}), A/W	~0.04	
Time constant τ, ns	~17	
Resistance R, Ω	~70	
Bias voltage V _b , V	typ. 0.6	
1/f noise corner frequency f _c , Hz	typ. 300k	
Active element temperature T _{det} , K	~230	
Active area A, mm×mm	1×1AR	
Package	TO8	
Acceptance angle Φ	~70°	
Window	wZnSeAR	


Features

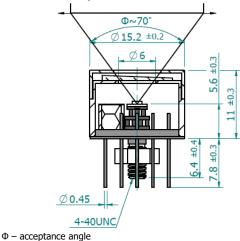
- Wide spectral range from 2.0 to 11.0 µm
- High responsivity
- Excellent linearity
- Environmentally friendly

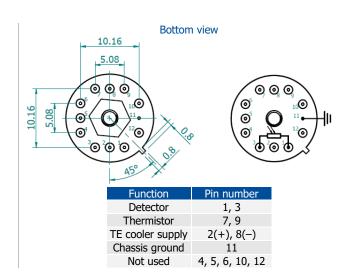

Two-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~230
V _{max} , V	1.3
I _{max} , A	1.2
O _{max} , W	0.36

Thermistor characteristics

Linearity (typ., $T_{BB} = 873 \text{ K}$)


T_{BB} – black body temperature

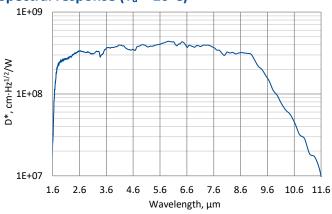

info@amstechnologies.com www.amstechnologies-webshop.com

programmable PIP

standard MIP

small SIP-TO8

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.



PCAS-3TE-9-0.1×0.1-T08-wZnSeAR-70 — ENGINEERING SAMPLE

Type II superlattice, three-stage thermoelectrically cooled, photoconductive detector

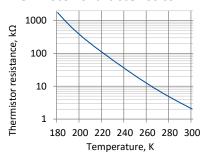
PCAS-3TE-9-0.1×0.1-TO8-wZnSeAR-70 is a Type II superlattice three-stage thermoelectrically cooled IR photoconductor, with excellent parameters. Photoconductive detector should operate in optimum bias voltage and current readout mode. Performance at low frequencies is reduced due to 1/f noise. 3° wedged zinc selenide anti-reflection coated window (wZnSeAR) prevents unwanted interference effects. For detection of CW radiation, using of optical chopper system is recommended. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

Spectral response (T_a = 20°C)

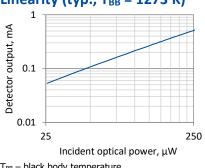
Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification $(T_a = 20^{\circ}C)$

Parameter	Detector type
	PCAS-3TE-9-0.1×0.1-TO8-wZnSeAR-70
Active element material	epitaxial superlattice heterostructure
Cut-on wavelength $\lambda_{\text{cut-on}}$ (10%), μ m	1.6±0.2
Peak wavelength λ _{peak} , μm	6.1±0.3
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	10.5±0.3
Detectivity D*(λ _{peak} , 20 kHz), cm·Hz ^{1/2} /W	~4.3×10 ⁸
Current responsivity R _i (λ _{peak}), A/W	~4.4
Time constant τ, ns	~17
Resistance R, Ω	~180
Bias voltage V _b , V	typ. 0.5
1/f noise corner frequency fc, Hz	typ. 20k
Active element temperature T _{det} , K	~210
Active area A, mm×mm	0.1×0.1
Package	TO8
Acceptance angle Φ	~70°
Window	wZnSeAR

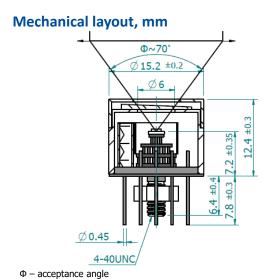

Features

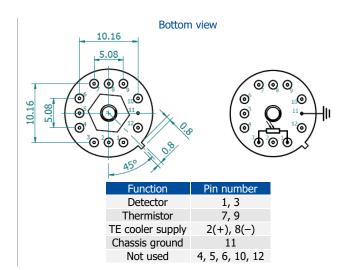
- Wide spectral range from 1.6 to 10.5 µm
- High responsivity
- Excellent linearity
- Environmentally friendly


Three-stage thermoelectric cooler parameters

Jarannetens	
Parameter	Value
T _{det} , K	~210
V_{max} , V	3.6
I _{max} , A	0.45
Q _{max} , W	0.27

Thermistor characteristics


Linearity (typ., $T_{BB} = 1273 \text{ K}$)



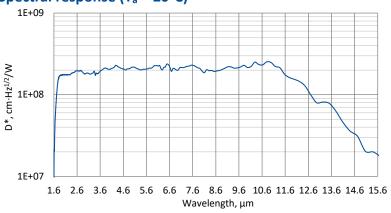
T_{BB} - black body temperature

programmable PIP

standard MIP

small SIP-TO8

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated 3TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.



PCAS-3TE-12-0.1×0.1-TO8-wZnSeAR-70 — ENGINEERING SAMPLE

Type II superlattice, three-stage thermoelectrically cooled, photoconductive

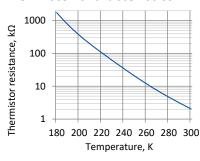
PCAS-3TE-12-0.1×0.1-TO8-wZnSeAR-70 is a Type II superlattice three-stage thermoelectrically cooled IR photoconductor, with excellent parameters. Photoconductive detector should operate in optimum bias voltage and current readout mode. Performance at low frequencies is reduced due to 1/f noise. 3° wedged zinc selenide anti-reflection coated window (wZnSeAR) prevents unwanted interference effects. For detection of CW radiation, using of optical chopper system is recommended. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

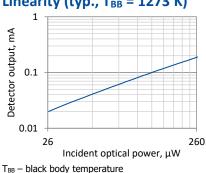
Spectral response (T_a = 20°C)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification $(T_a = 20^{\circ}C)$

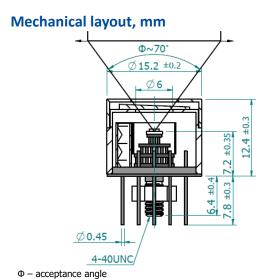
Parameter	Detector type	
Parameter	PCAS-3TE-12-0.1×0.1-TO8-wZnSeAR-70	
Active element material	epitaxial superlattice heterostructure	
Cut-on wavelength $\lambda_{\text{cut-on}}$ (10%), μ m	1.6±0.2	
Peak wavelength λ _{peak} , μm	10.5±0.3	
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	14.4±0.3	
Detectivity D*(λ _{peak} , 20 kHz), cm·Hz ^{1/2} /W	~2.5×10 ⁸	
Current responsivity R _i (λ _{peak}), A/W	~1.5	
Time constant τ, ns	~4	
Resistance R, Ω	~45	
Bias voltage V _b , V	typ. 0.5	
1/f noise corner frequency fc, Hz	typ. 20k	
Active element temperature T _{det} , K	~210	
Active area A, mm×mm	0.1×0.1	
Package	TO8	
Acceptance angle Φ	~70°	
Window	wZnSeAR	

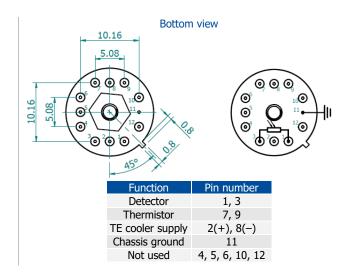

Features


- Very wide spectral range from 1.6 to 14.4 µm
- High responsivity
- **Excellent linearity**
- Environmentally friendly

Three-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~210
V_{max} , V	3.6
I _{max} , A	0.45
Omax, W	0.27


Thermistor characteristics

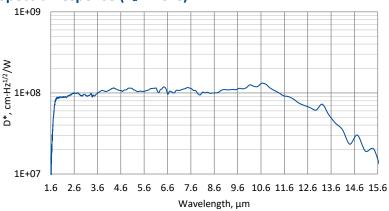


programmable PIP

standard MIP

small SIP-TO8

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated 3TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - $\dot{}$ irradiance with CW or single pulse longer than 1 μ s irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.



PCAS-2TE-13-0.1×0.1-TO8-wZnSeAR-70 — ENGINEERING SAMPLE

Type II superlattice, two-stage thermoelectrically cooled, photoconductive detector

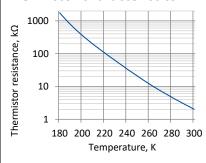
PCAS-2TE-13-0.1×0.1-T08-wZnSeAR-70 is a Type II superlattice two-stage thermoelectrically cooled IR photoconductor, with excellent parameters. Photoconductive detector should operate in optimum bias voltage and current readout mode. Performance at low frequencies is reduced due to 1/f noise. 3° wedged zinc selenide anti-reflection coated window (wZnSeAR) prevents unwanted interference effects. For detection of CW radiation, using of optical chopper system is recommended. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

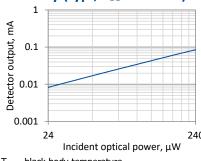
Spectral response $(T_a = 20^{\circ}C)$

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification $(T_a = 20^{\circ}C)$

Parameter	Detector type
	PCAS-2TE-13-0.1×0.1-TO8-wZnSeAR-70
Active element material	epitaxial superlattice heterostructure
Cut-on wavelength λ _{cut-on} (10%), μm	1.6±0.2
Peak wavelength λ _{peak} , μm	10.7±0.3
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	15.0±0.3
Detectivity D*(λ _{peak} , 20 kHz), cm·Hz ^{1/2} /W	~1.2×10 ⁸
Current responsivity R _i (λ _{peak}), A/W	~0.7
Time constant τ, ns	~3
Resistance R, Ω	~28
Bias voltage V _b , V	typ. 0.5
1/f noise corner frequency fc, Hz	typ. 20k
Active element temperature T _{det} , K	~230
Active area A, mm×mm	0.1×0.1
Package	TO8
Acceptance angle Φ	~70°
Window	wZnSeAR

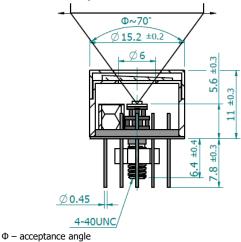

Features

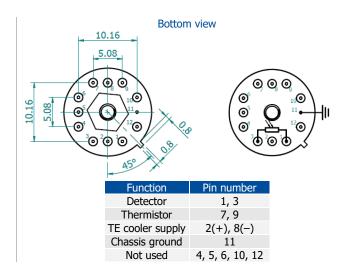

- Wide spectral range from 1.6 to 15.0 µm
- High responsivity
- Excellent linearity
- Environmentally friendly

Two-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~230
V _{max} , V	1.3
I _{max} , A	1.2
Omay, W	0.36

Thermistor characteristics





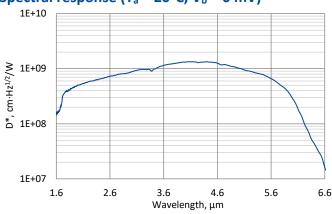
T_{BB} – black body temperature

Mechanical layout, mm

Dedicated preamplifiers

standard MIP

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μ s irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.



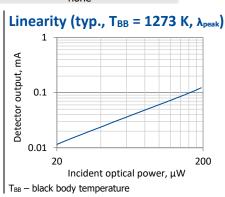
PVAS-5-0.1×0.1-TO39-NW-90 - ENGINEERING SAMPLE

Type II superlattice, ambient temperature, photovoltaic detector

PVAS-5-0.1×0.1-TO39-NW-90 is a Type II superlattice uncooled IR photovoltaic detector, with excellent parameters. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

Spectral response ($T_a = 20^{\circ}C$, $V_b = 0$ mV)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

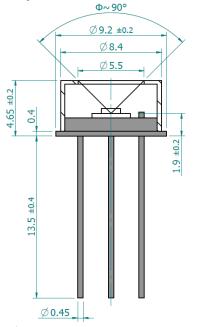

Specification ($T_a = 20$ °C, $V_b = 0$ mV)

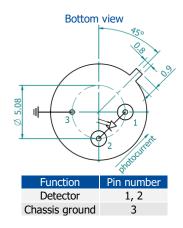
7		
Parameter	Detector type	
	PVAS-5-0.1×0.1-TO39-NW-90	
Active element material	epitaxial superlattice heterostructure	
Cut-on wavelength $\lambda_{\text{cut-on}}$ (10%), μ m	1.6±0.2	
Peak wavelength λ _{peak} , μm	4.2±0.3	
Cut-off wavelength λ _{cut-off} (10%), μm	6.2±0.2	
Detectivity D*(λ _{peak}), cm·Hz ^{1/2} /W	~1.2×10 ⁹	
Current responsivity R _i (λ _{peak}), A/W	~1.2	
Time constant τ, ns	~11	
Resistance R, Ω	~170	
Active area A, mm×mm	0.1×0.1	
Package	TO39	
Acceptance angle Φ	~90°	
Window	none	

Features

- Spectral range from 1.6 to 6.2 μm
- High responsivity
- Excellent linearity
- No bias required
- No 1/f noise
- Environmentally friendly

Normalized responsivity change vs. ambient temperature





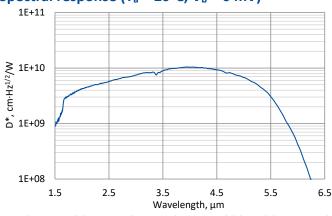
Mechanical layout, mm

Φ – acceptance angle

Dedicated preamplifier

small SIP-TO39

- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.



PVAS-2TE-5-0.1×0.1-TO8-wAl₂O₃-70 - ENGINEERING SAMPLE

Type II superlattice, two-stage thermoelectrically cooled, photovoltaic detector

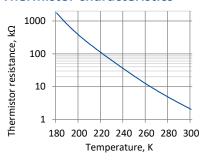
PVAS-2TE-5-0.1\times0.1-TO8-wAl₂O₃-70 is a Type II superlattice two-stage thermoelectrically cooled IR photovoltaic detector, with excellent parameters. 3° wedged sapphire window (wAl₂O₃) prevents unwanted interference effects. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

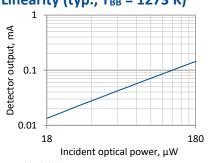
Spectral response ($T_a = 20$ °C, $V_b = 0$ mV)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification ($T_a = 20$ °C, $V_b = 0$ mV)

, a	•
Parameter	Detector type
	PVAS-2TE-5-0.1×0.1-TO8-wAl ₂ O ₃ -70
Active element material	epitaxial superlattice heterostructure
Cut-on wavelength $\lambda_{\text{cut-on}}$ (10%), μ m	1.7±0.2
Peak wavelength λ _{peak} , μm	4.0±0.3
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	5.8±0.2
Detectivity D*(λ _{peak}), cm·Hz ^{1/2} /W	~9.0×10 ⁹
Current responsivity R _i (λ _{peak}), A/W	~1.4
Time constant т, ns	~4
Resistance R, Ω	~5k
Active element temperature T _{det} , K	~230
Active area A, mm×mm	0.1×0.1
Package	TO8
Acceptance angle Φ	~70°
Window	wAl_2O_3

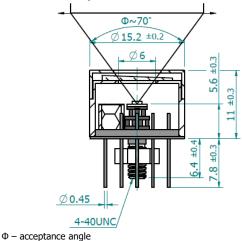

Features

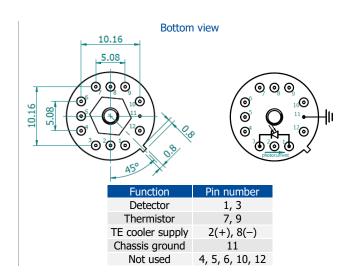

- Wide spectral range from 1.7 to 5.8 µm
- High responsivity
- Excellent linearity
- No bias required
- No 1/f noise
- Environmentally friendly

Two-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~230
V _{max} , V	1.3
I _{max} , A	1.2
Q _{max} , W	0.36

Thermistor characteristics





T_{BB} – black body temperature

programmable PIP

standard MIP

small SIP-TO8

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - $\dot{}$ irradiance with CW or single pulse longer than 1 μ s irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.

