

## FIBER OPTIC <br> MEMS SWITCH

for Specialty Fibers
or Polarisation-Maintaining Fibers


## OVERVIEW

The sercalo sn series are opto-mechanical switches for the most demanding applications in fiber optic sensor systems and instrumentation. The switch is available in $1 \times 1,1 \times 2,2 \times 2$ and $1 \times 4$ variants. The switch mechanism is available in either latching or non latching variants and has a very fast response time below 1 ms and below 1.5 dB insertion loss. The single mode switch is available for a number of specialty fibers covering design wavelengths such as $488 \mathrm{~nm}, 515 \mathrm{~nm}, 633 \mathrm{~nm}, 680 \mathrm{~nm}, 780 \mathrm{~nm}, 830 \mathrm{~nm}$, 980 nm and 1064 nm . The $1 \times 2$ and $2 \times 2$ variants can also be made with polarisation maintaining PANDA fibers.
The miniature package withstands rugged environments and is well suited for direct mounting on printed circuit boards. The switch is qualified according to Telcordia GR 1221.

## FEATURES

- reliable
- specialty fibers
- 1.5 dB insertion loss
- 1 ms response time
- low PDL
- 60 dB crosstalk
- miniature size
- $2 \times 2,2 \times 1,1 \times 1$ variants


## APPLICATIONS

- Instrumentation
- Source selection


## CONTACT:

Sercalo microtechnology Itd
Principality of Liechtenstein
Tel. +423 $2375797 \quad$ Fax. +423 2375748
www.sercalo.com e-mail: info@sercalo.com

## DESCRIPTION

The rercalo switches are composed of an optical subsystem and an electrical driver interface. The optical switching function is realised by a silicon MEMS chip. In the latching $S L$ variants, a bistable suspension mechanism keeps the last selected state in power off. In the non-latching SN variants, the switch returns into the bar state when electrical power is removed.
To operate the switch 5 V and 0 V are applied on the supply pins, which are used by the internal DC-DC converter to supply a high voltage for the actuator control. CMOS or TTL logic levels on the control pins switch the high voltage on the electrostatic actuator. To set the switch state in the latching variant, pin 2 respectively pin 3 are set to logic high ( 5 V ) for 10 ms and the corresponding switch state is selected. At rest pins 3 and 4 should be pulled to 0 V and must not be floating.
In the non-latching variant only pin 2 is used to set the state of the switch. To set the cross-state pin 3 must be at logic high. When pin 3 goes to logic low, or at power off, the switch returns into the bar state.

BAR STATE ( 0 V )


CROSS STATE (5V)


TECHNICAL SPECIFICATIONS

## Switch

Wavelength Range
Insertion Loss ${ }^{1}$
Crosstalk
Backreflection
Polarisation Dependent Loss
Polarisation Extinction Ratio ${ }^{2}$
Repeatability ${ }^{3}$ Switching Time
Durability
Package
Voltage V
Power Consumption
Operation Temperature Storage Temperature Size (L×W x H)
${ }^{1}$ for $1 \times 2,2 \times 2$ switch, fibers=5,6,7 excluding connector loss. Fibers 2,3 and $4=2 d B$ max. For $1 \times 4$ switch ILmax $<3.0 d B$ ${ }^{2}$ with Panda fibers for 7 and 9 only.
${ }^{3}$ value for constant temperature and polarisation



## PIN CONNECTIONS

15 V supply
2 bar select
3 cross select
4 ground 0 V
5 sensor output
6 sensor output


Figure 2: Pin layout SLTS1x2: latching with position monitor. Without monitor, pins 5,6 are omitted.


Figure 3: Pin layout SL1x4: latching. In the non-latching variant pins S4, S5, S6 are omitted. The $1 \times 4$ variant is not available with polarisation maintaining panda fibers.

Distributor


## FIBER OPTIC <br> MEMS SWITCH

for Specialty Fibers
or Polarisation-Maintaining Fibers


## OVERVIEW

The sercalo sn series are opto-mechanical switches for the most demanding applications in fiber optic sensor systems and instrumentation. The switch is available in $1 \times 1,1 \times 2,2 \times 2$ and $1 \times 4$ variants. The switch mechanism is available in either latching or non latching variants and has a very fast response time below 1 ms and below 1.5 dB insertion loss. The single mode switch is available for a number of specialty fibers covering design wavelengths such as $488 \mathrm{~nm}, 515 \mathrm{~nm}, 633 \mathrm{~nm}, 680 \mathrm{~nm}, 780 \mathrm{~nm}, 830 \mathrm{~nm}$, 980 nm and 1064 nm . The $1 \times 2$ and $2 \times 2$ variants can also be made with polarisation maintaining PANDA fibers.
The miniature package withstands rugged environments and is well suited for direct mounting on printed circuit boards. The switch is qualified according to Telcordia GR 1221.

## FEATURES

- reliable
- specialty fibers
- 1.5 dB insertion loss
- 1 ms response time
- low PDL
- 60 dB crosstalk
- miniature size
- $2 \times 2,2 \times 1,1 \times 1$ variants


## APPLICATIONS

- Instrumentation
- Source selection

Distributor

## CONTACT:

Sercalo microtechnology Itd
Landstrasse 151, 9494 Schaan
Principality of Liechtenstein
Tel. +423 $2375797 \quad$ Fax. +423 2375748
www.sercalo.com e-mail: info@sercalo.com

## DESCRIPTION

The rercalo switches are composed of an optical subsystem and an electrical driver interface. The optical switching function is realised by a silicon MEMS chip. In the latching $S L$ variants, a bistable suspension mechanism keeps the last selected state in power off. In the non-latching SN variants, the switch returns into the bar state when electrical power is removed.
To operate the switch 5 V and 0 V are applied on the supply pins, which are used by the internal DC-DC converter to supply a high voltage for the actuator control. CMOS or TTL logic levels on the control pins switch the high voltage on the electrostatic actuator. To set the switch state in the latching variant, pin 2 respectively pin 3 are set to logic high ( 5 V ) for 10 ms and the corresponding switch state is selected. At rest pins 3 and 4 should be pulled to 0 V and must not be floating.
In the non-latching variant only pin 2 is used to set the state of the switch. To set the cross-state pin 3 must be at logic high. When pin 3 goes to logic low, or at power off, the switch returns into the bar state.

BAR STATE ( 0 V )


CROSS STATE (5V)


TECHNICAL SPECIFICATIONS

## Switch

Wavelength Range
Insertion Loss ${ }^{1}$
Crosstalk
Backreflection
Polarisation Dependent Loss
Polarisation Extinction Ratio ${ }^{2}$
Repeatability ${ }^{3}$ Switching Time
Durability
Package
Voltage V
Power Consumption
Operation Temperature Storage Temperature Size (L×W x H)
${ }^{1}$ for $1 \times 2,2 \times 2$ switch, fibers=5,6,7 excluding connector loss. Fibers 2,3 and $4=2 d B$ max. For $1 \times 4$ switch ILmax $<3.0 d B$ ${ }^{2}$ with Panda fibers for 7 and 9 only.
${ }^{3}$ value for constant temperature and polarisation



PIN CONNECTIONS
15 V supply
2 bar select
3 cross select
4 ground 0 V
5 sensor output
6 sensor output


Figure 2: Pin layout SLTS1x2: latching with position monitor. Without monitor, pins 5,6 are omitted.


Figure 3: Pin layout SL1x4: latching. In the non-latching variant pins S4, S5, S6 are omitted. The $1 \times 4$ variant is not available with polarisation maintaining panda fibers.

Distributor


## OVERVIEW

The sercale $1 \times 4$ switch is a very fast opto-mechanical switch working over both telecom wavelength windows from 1240 nm to 1600 nm . The highly reliable switching mechanism is based on micromechanical mirrors and features below 1 ms switching time and below 1.2 dB insertion loss.
The miniature package withstands rugged environments and is well suited for direct mounting on printed circuit boards. The switch is built by cascading $1 \times 2$ switches which are qualified according to Telcordia GR1221.

FAST
FIBER OPTIC 1x4 SWITCH


## FEATURES

- reliable
- 0.7 dB insertion loss
- 1 ms response time
- 60 dB crosstalk
- non-latching


## APPLICATIONS

- Source Selection
- Protection Switching
- Monitoring
- Wavelength provisioning

ORDERING INFORMATION
SN1x4-9N

## CONTACT:

Sercalo Microtechnology Ltd.
Landstrasse 151, FL-9494 Schaan
Principality of Liechtenstein
Tel. +423 $2375797 \quad$ Fax. +4232375748
www.sercalo.com
e-mail: info@sercalo.com




Distributor


## FIBER OPTIC <br> MEMS SWITCH

for specialty fibers or Polarisation-Maintaining Fibers


## OVERVIEW

The sercalo sn series are opto-mechanical switches for the most demanding applications in fiber optic sensor systems and instrumentation. The switch is available in $1 \times 1,1 \times 2,2 \times 2$ and $1 \times 4$ variants. The switch mechanism is available in either latching or non latching variants and has a very fast response time below 1 ms and below 1.5 dB insertion loss. The single mode switch is available for a number of specialty fibers covering design wavelengths such as $488 \mathrm{~nm}, 515 \mathrm{~nm}, 633$ $\mathrm{nm}, 680 \mathrm{~nm}, 780 \mathrm{~nm}, 830 \mathrm{~nm}, 980 \mathrm{~nm}$ and 1064 nm . It can also be made with polarisation maintaining PANDA fibers.
The miniature package withstands rugged environments and is well suited for direct mounting on printed circuit boards. The switch is qualified according to Telcordia GR 1221.

## FEATURES

- reliable
- specialty fibers
- 1.5 dB insertion loss
- 1 ms response time
- low PDL
- 60 dB crosstalk
- miniature size
- $2 \times 2,2 \times 1,1 \times 1$ variants


## APPLICATIONS

- Instrumentation
- Source selection


## CONTACT:

Sercalo microtechnology Itd
Landstrasse 151, FL-9494 Schaan
Principality of Liechtenstein
Tel. +423 $2375797 \quad$ Fax. +423 2375748
www.sercalo.com e-mail: info@sercalo.com

## DESCRIPTION

The rercale switches are composed of an optical subsystem and an electrical driver interface. The optical switching function is realised by a silicon MEMS chip, on which a mirror can be moved in and out of the optical path by electrostatic actuation. In the latching SL variants a bistable suspension mechanism keeps the last selected state in power off. In the non-latching $S N$ variants the switch returns into the bar state when electrical power is removed.
The absence of fatigue and wear-out allows to achieve a constant switching quality even after billions of actuation cycles. The switch features fast switching below 1 ms and high crosstalk attenuation above 60 dB . Repeatability is better than 0.001 dB . The switch is powered by a 5 V supply voltage. A 5 V TTL or CMOS drive signal is used to control the switching state.

| TECHNICAL SPECIFICATIONS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Unit | Min | Typ | Max |
| Switch |  |  |  |  |
| Wavelength RangeInsertion Loss ${ }^{1}$ | nm | Cut off | $\sim$ Cut Off +200 nm |  |
|  | dB |  | 2.0 | 3.0 |
| Crosstalk | dB |  | 75 | 60 |
| Backreflection | dB |  | 55 | 50 |
| Polarisation Dependent Loss | dB |  | 0.05 | 0.1 |
| Polarisation Extinction Ratio ${ }^{2}$ | dB | 20 | 25 |  |
| Repeatability ${ }^{3}$ | dB |  |  | 0.001 |
| Switching Time | ms |  | 0.5 | 1 |
| Durability | cycles |  | 1 billion |  |
| Package |  |  |  |  |
| Voltage | V | 4 | 5 | 5.25 |
| Power Consumption | mW |  | 5 | 10 |
| Operation Temperature | ${ }^{\circ} \mathrm{C}$ | 0 |  | 70 |
| Storage Temperature | ${ }^{\circ} \mathrm{C}$ | -40 |  | 85 |
| Size (L x W x H) <br> ${ }^{1}$ for $1 \times 4$ excluding connector loss. ${ }^{2}$ with ${ }^{3}$ value for constant temperature and pola | mm <br> Panda fibe risation | 1550 nm. | $70 \times 70 \times 9.5$ |  |




Figure 1: Pin layout SN2x2: non-latching

PIN CONNECTIONS
15 V supply
2 bar select
3 cross select
4 ground 0 V
5 sensor output
6 sensor output


Figure 2: Pin layout SLTS1x2: Ia



Optical port selection:
1:2ms pulse, 5V CMOS / TTL
0: OV
$\mathrm{x}: 0 \mathrm{~V}$ or 5 V

| S1 | S2 | S3 | S4 | S5 | S6 | Port |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | x | 1 | 0 | x | 0 | B |
| 0 | 0 | x | x | 1 | 1 | A |
| 0 | 1 | x | x | 0 | 1 | D |
| 1 | x | 0 | 1 | x | 0 | C |

SIDE VIEW ${ }^{\text {®i }}$


Figure 3: Pin layout SL1x4: latching. In the non-latching variant pins S4, S5, S6 are omitted.

# FIBER OPTIC MEMS SWITCH 



for specialty fibers or Polarisation-Maintaining fibers



## OVERVIEW

The sercolo sn series are opto-mechanical switches for the most demanding applications in fiber optic sensor systems and instrumentation. The switch is available in $1 \times 1,1 \times 2,2 \times 2$ and $1 \times 4$ variants. The switch mechanism is available in either latching or non latching variants and has a very fast response time below 1 ms and below 1.5 dB insertion loss. The single mode switch is available for a number of specialty fibers covering design wavelengths such as 488 nm , $515 \mathrm{~nm}, 633 \mathrm{~nm}, 680 \mathrm{~nm}, 780 \mathrm{~nm}, 830 \mathrm{~nm}, 980$ nm and 1064 nm . The $1 \times 2$ and $2 \times 2$ variants can also be made with polarisation maintaining PANDA fibers.
The miniature package withstands rugged environments and is well suited for direct mounting on printed circuit boards. The switch is qualified according to Telcordia GR 1221.

## FEATURES

- reliable
- specialty fibers
- 1.5 dB insertion loss
- 1 ms response time
- low PDL
- 60 dB crosstalk
- miniature size
- $2 \times 2,2 \times 1,1 \times 1$ variants


## APPLICATIONS

- Instrumentation
- Source selection


## Contact:

Sercalo Microtechnology Ltd.
Landstrasse 151, 9494 Schaan
Fürstentum Liechtenstein
Tel. +423 2375797 Fax. +423 2375748
www.sercalo.com e-mail: info@sercalo.com

## DESCRIPTION

The rercalo switches are composed of an optical subsystem and an electrical driver interface. The optical switching function is realised by a silicon MEMS chip. In the latching $S L$ variants, a bistable suspension mechanism keeps the last selected state in power off. In the non-latching $S N$ variants, the switch returns into the bar state when electrical power is removed.
To operate the switch 5 V and 0 V are applied on the supply pins, which are used by the internal DC-DC converter to supply a high voltage for the actuator control. CMOS or TTL logic levels on the control pins switch the high voltage on the electrostatic actuator. To set the switch state in the latching variant, pin 2 respectively pin 3 are set to logic high ( 5 V ) for 10 ms and the corresponding switch state is selected. At rest pins 3 and 4 should be pulled to 0 V and must not be floating.
In the non-latching variant only pin 2 is used to set the state of the switch. To set the cross-state pin 3 must be at logic high. When pin 3 goes to logic low, or at power off, the switch returns into the bar state.

BAR STATE ( 0 V )


CROSS STATE (5V)


TECHNICAL SPECIFICATIONS

## Switch

| Wavelength Range Insertion Loss ${ }^{1}$ | $\begin{aligned} & \mathrm{nm} \\ & \mathrm{~dB} \end{aligned}$ | Cut off | $\sim$ Cut Off +200 nm |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0.7 | 1.5 |
| Crosstalk | dB |  | 75 | 60 |
| Backreflection | dB |  | 55 | 50 |
| Polarisation Dependent Loss | dB |  | 0.02 | 0.05 |
| Polarisation Extinction Ratio ${ }^{2}$ | dB | 18 | 24 |  |
| Repeatability ${ }^{3}$ | dB |  |  | 0.001 |
| Switching Time | ms |  | 0.5 | 1 |
| Durability | cycles |  | 1 billion |  |
| ckage |  |  |  |  |
| Voltage | V | 4 | 5 | 5.25 |
| Power Consumption | mW |  | 5 | 10 |
| Operation Temperature | ${ }^{\circ} \mathrm{C}$ | 0 |  | 70 |
| Storage Temperature | ${ }^{\circ} \mathrm{C}$ | -40 |  | 85 |
| Size ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) | mm |  | $40 \times 16.5 \times$ |  |
| ${ }^{1}$ for $1 \times 2,2 \times 2$ switch, fibers=5,6,7 excluding connector loss. Fibers 2,3 and $4=2 \mathrm{~dB}$ max. For $1 \times 4$ switch ILmax $<3.0 \mathrm{~dB}$ <br> ${ }^{2}$ with Panda fibers for 7 and 9 only.. <br> ${ }^{3}$ value for constant temperature and polarisation |  |  |  |  |




Figure 1: Pin layout SN2x2: non-latching

PIN CONNECTIONS
15 V supply
2 bar select
3 cross select
4 ground 0 V
5 sensor output
6 sensor output


Figure 2: Pin layout SLTS1x2: la
VIEW FROM PIN SIDE

Optical port selection:
1: 2ms pulse, 5V CMOS / TTL
0: OV
$\mathrm{x}: 0 \mathrm{~V}$ or 5 V

| S1 | S2 | S3 | S4 | S5 | S6 | Port |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | x | 1 | 0 | x | 0 | B |
| 0 | 0 | x | x | 1 | 1 | A |
| 0 | 1 | x | x | 0 | 1 | D |
| 1 | x | 0 | 1 | x | 0 | C |

