## Applications

Material microprocessing

Ophthalmology

Cold marking

Dicing and scribing of semiconductors, glasses, ceramics

> Display manufacturing

Scientific research

# **litilit** INDYLIT MN 10

Industrial femtosecond laser for microprocessing 1030nm, 450fs, 10W, 80kHz-1MHz

## Features

Extremely robust and stable

High pulse energy and clean pulse shape

Maintenance-free & turn-key

Adjustable repetition rate, pulse duration, power

Passively air cooled

# Built like a tank firing femtosecond shells

ndustrial Femtosecond Laser

**Indylit 10** is high energy air-cooled laser suitable for a variety of ultrafast applications.

The laser head features an entirely passively-cooled design (patent pending), ensuring high stability of the optical parameters such as pulse duration, beam pointing and power.

Its mechanical construction can withstand almost everything you can throw at it, making Indylit a new kind of industrial femtosecond technology.

> info@amstechnologies.com www.amstechnologies-webshop.com

Contact us



IND

litilit.com



#### Specifications

|                                           | Indylit 10                      |
|-------------------------------------------|---------------------------------|
| Central wavelength                        | 1030 ± 2 nm                     |
| Average power                             | >10 W @ 300-1000 kHz            |
| <br>Max. pulse energy ۳                   | >100 µJ @ 80 kHz, >10 µJ @1 MHz |
| Pulse duration                            | <450 fs                         |
| Pulse duration tunability                 | 450 fs - 2 ps                   |
| Internal Pulse repetition rate (RR)       | 80 kHz – 1 MHz                  |
| Pulse repetition rate after pulse picker  | RR <sub>/</sub> /N, N = 1, 2,   |
| Triggering mode                           | Pulse picker control via TTL    |
| Power attenuation <sup>2)</sup>           | 100-0.1%                        |
| Beam quality                              | M₂ <1.2                         |
| Beam circularity 3)                       | >0.87                           |
| Beam diameter (at 1/e² level)             | 1.5 ± 0.5 mm                    |
| Beam divergence (full angle)              | < 1.5 mrad                      |
| Beam pointing (pk-to-pk)                  | <30 µrad @ 80-500 kHz.          |
|                                           | <50 µrad @ 0.5-1 MHz            |
| Beam pointing vs temp. (pk-to-pk)         | < 20 µrad/°C                    |
| Pulse Energy Stability (RMS)              | <1.0 %                          |
| Power Stability (RMS)                     | <1.0 %                          |
| Warm-up time (cold start)                 | <15 min                         |
| Warm-up time (warm start)                 | <10 s                           |
| Laser control interface                   | CAN, USB                        |
| Operating voltage                         | 100240 V AC, 4763 Hz            |
| Average power consumption (after warm-up) | <300 W                          |
| Operating temperature                     | 15 – 35 °C                      |
| Humidity                                  | non condensing                  |
| Transportation/storage temperature        | -20 – +70 °C                    |
| Dimensions:                               |                                 |
| Laser head (LxWxH)                        | 483 x 204 x 186 mm              |
| Control unit (WxDxH)                      | 449 x 368 x 140 mm              |
| Umbilical length                          | 3 ± 0.3 m                       |
| Colling:                                  |                                 |
| Laser head                                | air (passive)                   |
| Control unit                              | forced air (fans)               |

 $^{\scriptscriptstyle 1\!\!\!0}$  Please refer to the power and energy vs. pulse repetition rate curves for typical values

<sup>2)</sup> Attenuation can be control in a few different regimes: a) via PC user interface, b) by CAN register, c) by analog input (0-1V) <sup>3)</sup> Defined as the worst case ellipticity along the z-scan (±5xL<sub>Rayleigh</sub>) of the beam

<sup>4)</sup> Indylit lasers are class 4 laser products. Avoid eye or skin exposure to direct or scattered laser light

<sup>5)</sup> World patented technology: US10038297, JP6276471, EP3178137, CN106575849





#### Performance



Drawings







www

litilit.com

#### Performance



#### Drawings

