155Mbps/622Mbps/1.25Gbps/2.5Gbps

High Speed InGaAs Photodiodes

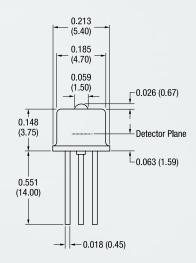
FCI-InGaAs-XXX series with active area sizes of, 75µm, 120µm, 300µm, 400μm and 500μm, exhibit the characteristics need for Datacom and Telecom applications. Low capacitance, low dark current and high responsivity from 1100nm to 1620nm make these devices ideal for high-bit rate receivers used in LAN, MAN, WAN, and other high speed communication systems. The photodiodes are packaged in 3 lead isolated TO-46 cans or with AR coated flat windows or micro lenses to enhance coupling efficiency. FCI-InGaAs-XXX series is also offered with FC, SC, ST and SMA receptacles.

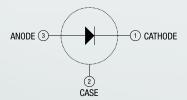
APPLICATIONS

- High Speed Optical Communications
- Single/Multi-Mode Fiber Optic Receiver
- Gigabit Ethernet/Fibre Channel
- SONET/SDH, ATM
- Optical Taps

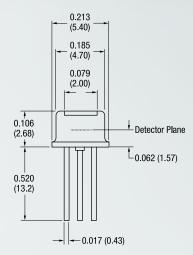
FEATURES

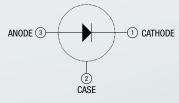
- High Speed
- · High Responsivity
- Low Noise
- Spectral Range 900nm to 1700nm


Absolute Maximum	ximum Ratings										
PARAMETERS	SYMBOL	MIN	MAX	UNITS							
Storage Temperature	T _{stg}	-55	+125	°C							
Operating Temperature	T _{op}	-40	+75	°C							
Soldering Temperature	T _{sld}		+260	°C							


info@amstechnologies.com www.amstechnologies-webshop.com **Contact us**

PARAMETERS S		CONDITIONS	FCI-InGaAs-75		FCI-InGaAs-120		FCI-InGaAs-300		FCI-InGaAs-400			FCI-InGaAs-500						
	SYMBOL		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Active Area Diameter	AA_{ϕ}			75			120			300			400			500		μm
Responsivity (Flat Window Package)	R _λ	λ=1310nm	0.80	0.90		0.80	0.90		0.80	0.90		0.80	0.90		0.80	0.90		- A/W
		λ=1550nm	0.90	0.95		0.90	0.95		0.90	0.95		0.90	0.95		0.90	0.95		
Capacitance	C _j	V _R = 5.0V		1.5			2.0			10.0			14.0			20.0		pF
Dark Current	I _d	V _R = 5.0V		0.03	2		0.05	2		0.30	5		0.40	5		0.50	20	nA
Rise Time/ Fall Time	t _r /t _f	$V_R = 5.0V,$ $R_L = 50\Omega$ 10% to 90%			0.20			0.30			1.5			3.0			10.0	ns
Max. Reverse Voltage					20			20			15			15			15	V
Max. Reverse Current					1			2			2			2			2	mA
Max. Forward Current					5			5			8			8			8	mA
NEP				3.44E- 15			4.50E- 15			6.28E- 15			7.69E- 15			8.42E- 15		W/√Hz


155Mbps/622Mbps/1.25Gbps/2.5Gbps High Speed InGaAs Photodiodes



Pin Circle Diameter = 0.100 (2.54)

Pin Circle Diameter = 0.100 (2.54)

Notes:

- All units in inches (mm).
- All tolerances: 0.005 (0.125).
- Please specify when ordering the flat window or lens cap devices.
- The flat window devices have broadband AR coatings centered at 1310nm.
- The thickness of the flat window=0.008 (0.21).