

QUAD OPTICAL LINE PROTECTION TAP MODULE

OVERVIEW

The sercalo quad optical line protection tap module is a fiber optic switch based on MEMS technology. The switching mechanism offers the reliability of a solid state device.

The miniature package withstands rugged environments, dimensions and mounting holes meet EIA/ECA-740 standard (SFF-8301). The optical module communicates over I2C/SMBus interface.

The component is designed to comply Telcordia 1221 quality standards.

FEATURES

- Low insertion loss
- Low response time
- I2C/SMBus interface
- Miniature size compatible with 3.5-inch HDD

APPLICATIONS

- optical cross-connect
- optical network protection/restoration

Contact:

Sercalo Microtechnology Ltd.
Landstrasse 151
9494 Schaan
Principality of Liechtenstein
Tel. +4232375797 Fax. +4232375748
www.sercalo.com e-mail: info@sercalo.com
sercalo's quad optical line protection tap module is composed by four independent optical networks based on a series of switches and splitters (50/50 or 10/90 tap ratios). It comes with latching (option A) or non-latching (option B) fiber optic switches. The configuration of the network is controlled by an I2C/SMBus interface.

TECHNICAL SPECIFICATIONS for Single Mode fiber

	Unit	Min	Typ	Max
Optical Specifications				
Wavelength range	nm	1240	-	1640
Insertion loss (switch) ${ }^{1}$	dB	-	0.4	1.0
Insertion loss (50/50 splitter) ${ }^{1}$	dB	-	3.07	3.4
Insertion loss (switch + 50/50 splitter) ${ }^{1}$	dB	-	3.5	4.4
Crosstalk	dB	60	75	-
Return Loss	dB	50	55	-
Absolute optical power (switch inputs)	mW	-	-	100
Absolute optical power (splitter inputs)	mW	-	-	200
Switching time	ms	-	2	10
Durability	cycles	No wear out		
Electrical Specifications				
Supply voltage (V_{cc})	V	4.75	5	24
Power consumption	mW	-	45	1500
SMBus/l ${ }^{2} \mathrm{C}$ bus speed	kbps	-	-	400
I2C and ADDRn low-level voltage	V	-0.5	-	0.8
I2C and ADDRn high-level voltage	V	2.5	-	5.5
RESET low-level voltage	V	-0.5	-	0.8
RESET high-level voltage	V	2.4	-	5.5
RESET minimum input pulse	$\mu \mathrm{s}$	1	-	-
RESET glitch rejection	ns	-	100	-
Package				
Operation temperature	${ }^{\circ} \mathrm{C}$	-10	-	70
Storage temperature	${ }^{\circ} \mathrm{C}$	-40	-	85
Weight	g	TBD		
Dimensions (body)	mm	$140 \times 101.6 \times 25.5$		

${ }^{1}$ Values at $25^{\circ} \mathrm{C}$ at 1310 or 1550 nm , without connectors.

ORDERING INFORMATION

ELECTRICAL CONNECTOR PINOUT

Pin number	Description	$\begin{gathered} \text { Pin } \\ \text { number } \end{gathered}$	Description
1	SMBus/I2C SDA	6	Reserved ${ }^{3}$
2	SMBus/I2C SCL	7	Reserved ${ }^{3}$
3	SMBus/I2C Addr0 ${ }^{2}$	8	Reset ${ }^{2}$
4	SMBus/I2C Addr1 ${ }^{2}$	9	Ground (GND)
5	SMBus/I2C Addr2 ${ }^{2}$	10	Supply voltage (V_{cc})

FUNCTIONAL BLOC DIAGRAM (50/50 SPLITTER OPTION)

I2C/SMBUS ADDRESS MAP

Addr2	Addr1	Addr0	Address of optical switches control (hex)	Address of signaling LEDs control (hex)
0	0	0	20 h	C0h
0	0	1	21 h	C1h
0	1	0	22 h	C2h
0	1	1	23 h	C3h
1	0	0	24 h	C4h
1	0	1	25 h	C5h
1	1	0	26 h	C6h
1	1	1	27 h	C7h

ADDRESS OF SIGNALING LEDS

Address	LED
0	RRU1 Green
1	MOD1 Green
2	MOD1 Yellow
3	BBU1 Green
4	RRU2 Green
5	MOD2 Green
6	MOD2 Yellow
7	BBU2 Green
8	RRU3 Green
9	MOD3 Green
10	MOD3 Yellow
11	BBU3 Green
12	RRU4 Green
13	MOD4 Green
14	MOD4 Yellow
15	BBU4 Green

- Refer to NXP PCA9552 for additional details on timing and transmission protocol

CONFIGURING OPTICAL SWITCHES

slave address
switch status

- Switch status bit 0: CROSS

Switch status bit 1: BAR (default at startup and power off, green path on functional block diagram)

- Refer to NXP PCA9670 for additional details on timing and transmission protocol

