Revision 0.93

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
767 nm DFB Laser	Spectroscopy (K D2 line)
with hermetic 14-Pin Butterfly Housing (ROHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	
with integrated Beam Collimation	

Distributor

....

amstechnologies

where technologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

eagleyard

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-40		85
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			140
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			60
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			2.8

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		35
Forward Current	I _F	mA			130
Output Power	P _{opt}	mW	10		50

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	766	767	768
Target Wavelength	λ_T	nm		766.7	
Linewidth (FWHM)	Δλ	MHz		0.6	1
Mode-hop free Tuning Range	$\Delta\lambda_{tune}$	pm	20		
Sidemode Supression Ratio	SMSR	dB	30	50	

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

Measurement Conditions / Comments
see images on page 4
reached within T_{LD} = 15°35°C at 50 mW
$P_{opt} = 50 \text{ mW}$
reached by current modulation
$P_{opt} = 50 \text{ mW}$

Revision 0.93

-+ T

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at $I_{LD} = 25^{\circ}$ at	BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Laser Current @ $P_{opt} = 50 \text{ mW}$	I _{LD}	mA			130
Slope Efficiency	η	W / A		0.9	
Threshold Current	I _{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		0.1	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		0.1	
Beam Diameter horizontal	d	mm		1.0	1.2
Beam Diameter vertical	d_\perp	mm		0.8	1.2
Degree of Polarization	DOP	%		60	

parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3) parallel to the base plate of the housing (see p. 3)

Measurement Conditions / Comments

perpendicular to base plate of the housing (see p. 3) $P_{opt} = 50$ mW; E field perpendicular to the base plate

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	0.5		40

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.4	
Temperature Difference	ΔΤ	К			50

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) ^{#NV}
Steinhart & Hart Coefficient B	В			2.3410 x 10) ^{#NV}
Steinhart & Hart Coefficient C	С			8.7755 x 10) #NV

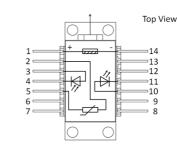
Measurement Conditions / Comments

 $U_R = 5 V$

Measurement Conditions / Comments
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = Tcase - TLD $

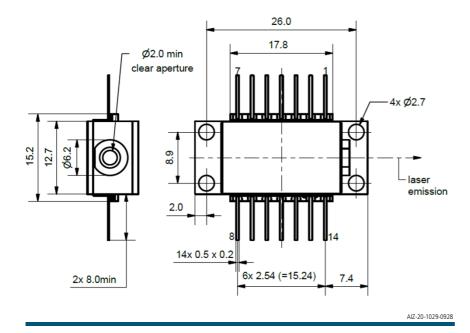
$\Gamma_{LD} = 25^{\circ} C$	
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)}$ at $T_{LD} =$	0°50°C
$/T = A + B(ln R) + C(ln R)^3$	
: temperature in Kelvin	
: resistance at T in Ohm	

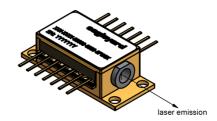
2020-11-11


Revision 0.93

2020-11-11

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

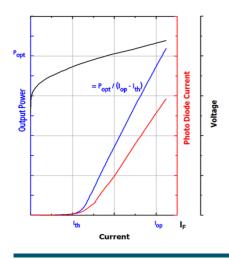

Pin Assignment

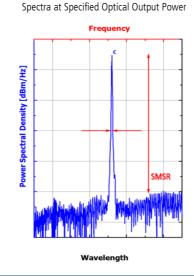

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected

Package Drawings

Caution. Excessive mechanical stress on the package can lead to a damage of the laser.

See instruction manual on www.eagleyard.com


This data sheet is subject to change without notice. © eagleyard Photonics


0.93 Revision

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

vith 21 CFR 1040.10 and 1040.40

Contact us

2020-11-11