

Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Distributor

amstechnologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

General	Product I	Information
---------	-----------	-------------

Application
Spectroscopy
Metrology

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	T_S	°C	-40		85
Operational Temperature at Case (non cond.)	T_{C}	°C	0		50
Forward Current	I _F	Α			3
Reverse Voltage	V_R	V			0
Output Power	P_{opt}	W			1.1

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	5		40
Forward Current	I _F	А			2.5
Input Power	P _{input}	mW	10		50
Output Power	P _{opt}	W			1.0

Measurement Conditions / Comments		
non condensing		
with proper injection from a seed laser		

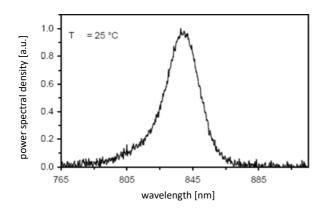
Characteristics at T_{LD} = 25 °C at BOL

Parameter	Symbol	Unit	min	typ	max
Design Wavelength	λ_{C}	nm		830	
Gain Width (FWHM)	Δλ	nm		30	
Temperature Coefficient of Wavelength	$d\lambda$ / dT	nm / K		0.3	
Operational Current @ P _{opt} = 1.0 W	I _{op Gain}	А			2.5
Output Power	P _{opt}	W	1.0		
Amplification	G	dB		13	
Cavity length	L _C	μm		4000	

Measure	ment Con	ditions	/ Comm	ents	
with prop	er injectio	on from	a seed la	aser	

Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier



Characteristics at T _{LD} = 25 °C at BOL					cont'd	
Parameter	Symbol	Unit	min	typ	max	
Reflectivity at Front Facet	R _{ff}			3.10-4	1.10-3	
Reflectivity at Rear Facet	R_{rf}			3.10-4	1.10-3	
Input Aperture (at rear side)	d _{in}	μm		3		
Output Aperture (at front side)	d _{out}	μm		280		
Astigmatism	А	μm		640		
Input Divergence parallel (1/e²)	$\Theta_{in }$	0				
Input Divergence perpendicular (1/e²)	$\Theta_{in\perp}$	0				
Output Divergence parallel (1/e²)	$\Theta_{\text{out} }$	0				
Output Divergence perpendicular (1/e²)	$\Theta_{\text{out}\perp}$	0				
Polarization				TE		

Measurement Conditions / Comments
depending on operating conditions
C. Calabra and Italian in contract and an a
E field parallel to junction plane

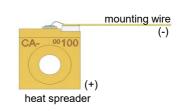
Typical Measurement Results

spectrum measured w/o injection

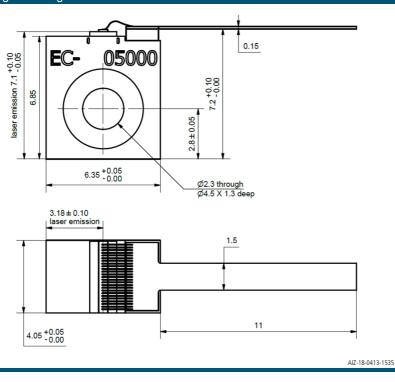
Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

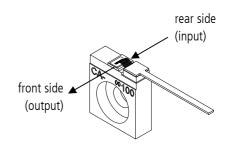
Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Package Dimensions

Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h	mm	7.05	7.10	7.20
C-Mount Thickness	t	mm		4.05	


Measurement Conditions / Comments

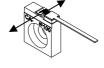

Package Pinout

Mounting Wire	Cathode (-)
Housing	Anode (+)

Package Drawings

Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks willl contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

CLASS 4 LASER PRODUCT WAVELENGTH 830 nm MAX. OUTPUT POWER 1.1 W

21 CFR 1040.10 and 1040.40

