Revision 0.70

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

amstechnologies

where technologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

Contact us

TOPTICA

General Product Information

Product	Application
850 nm Tapered Amplifier	Spectroscopy
14 Pin Butterfly Package (non hermetic)	
with PM Fiber and FC/APC Connector (Input)	
and collimated Output Beam	

Absolute Maximum Ratings

Symbol	Unit	min	typ	max
Ts	°C	-40		85
T _C	°C	15		35
T _{chip}	°C	15		35
I _F	А			3.5
V _R	V			2
P _{opt}	W			2.2
	T _s T _c T _{chip} I _F V _R	$T_{s} \circ C$ $T_{chip} \circ C$ $I_{F} A$ $V_{R} V$	T _s °C -40 T_c °C 15 T_{chip} °C 15 I_F A V_R V	Ts°C-40Tc°C15Tchip°C15IFAVRV

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	15		50
Operational Temperature at Chip	T _{chip}	°C	15	25	35
Forward Current	I _F	А			3.2
Input Power	P _{input}	mW	10		80
Output Power	P _{opt}	W			2

Characteristics at T_{chip}

Symbol	Unit	min	typ	max
λ_{c}	nm		850	
Δλ	nm		20	
dλ / dT	nm / K		0.3	
I _{op Gain}	А			3.2
P _{opt}	W	2.0		
G	dB		16	
	λ _c Δλ dλ / dT I _{op Gain} P _{opt}	$\begin{array}{c c} \lambda_{\rm C} & {\rm nm} \\ \Delta\lambda & {\rm nm} \\ {\rm d}\lambda/{\rm dT} & {\rm nm}/{\rm K} \\ \\ I_{\rm op \;Gain} & {\rm A} \\ P_{\rm opt} & {\rm W} \end{array}$	λ _c nm Δλ nm dλ / dT nm / K I _{op Gain} A P _{opt} W 2.0	$\begin{array}{c ccc} \lambda_{c} & nm & 850 \\ \Delta\lambda & nm & 20 \\ d\lambda / dT & nm / K & 0.3 \\ l_{op \ Gain} & A \\ P_{opt} & W & 2.0 \end{array}$

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments			
non condensing			
with proper injection from a seed laser			

Measurement Conditions / Comments				
$P_{opt} =$ with proper injection from a seed laser				
at recommended maximum forward current				

Revision 0.70

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Characteristics at T _{chip}					cont'd
Parameter	Symbol	Unit	min	typ	max
Beam Diameter horizontal	d _{out}	mm		1	
Beam Diameter vertical	d _{out⊥}	mm		1	
Output Divergence parallel	Θ_{out}	mrad		3	
Output Divergence perpendicular	$\Theta_{out\perp}$	mrad		3	
Polarization				TE	

Measurement Conditions / Comments				
1/e2				
1/e2				
E field parallel to base plate				

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А			2.5
Voltage	U _{TEC}	V			5
Power Dissipation (total loss at case)	Ploss	W		10	
Temperature Difference	ΔΤ	К			20

Thermistor (Standard NTC Type)

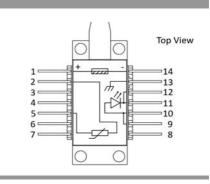
Symbol	Unit	min	typ	max
R	kΩ		10	
β			3892	
А			1.1293 x 10	-3
В			2.3410 x 10	-4
С			8.7755 x 10	-8
	R β A	R kΩ β A	R kΩ β Α Β	R kΩ 10 β 3892 A 1.1293 x 10

$\label{eq:chip} \begin{array}{l} \mbox{Measurement Conditions / Comments} \\ \hline T_{Chip} = 25^{\circ} \ C \\ \hline R_1 / R_2 = e^{\beta \left(1/T_1 - 1/T_2 \right)} \ \text{at } T_{LD} = 0^{\circ} \ \dots \ 50^{\circ} \ C \\ \hline 1/T = A + B(\ln R) + C(\ln R)^3 \\ \hline T: \ temperature \ in \ Kelvin \\ R: \ resistance \ at \ T \ in \ Ohm \end{array}$

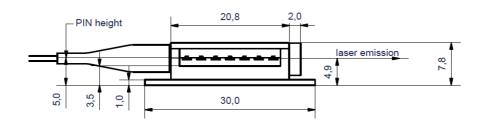
2022-01-10

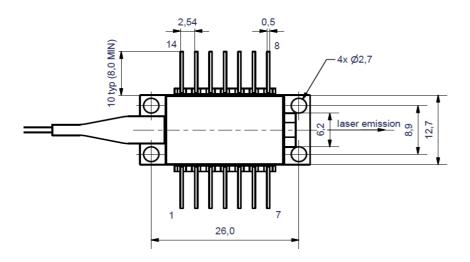
Measurement Conditions / Comments				
$P_{opt} =$	2 W			
$P_{opt} =$	2 W			
$P_{opt} =$	2 W			
$P_{opt} =$	2 W			

Revision 0.70



2022-01-10


TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	not connected	12	Amplifier (Cathode)
4	not connected	11	Amplifier (Cathode)
5	Thermistor	10	Amplifier (Anode)
6	not connected	9	Amplifier (Anode)
7	not connected	8	not connected

Package Drawings

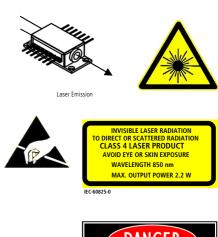
Caution. Excessive mechanical stress on the package can lead to a damage of the device. See <u>instruction manual</u> on www.toptica-eagleyard.com

This data sheet is subject to change without notice. © eagleyard Photonics

Revision 0.70

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Unpacking, Installation and Laser Safety


Unpacking the taperd amplifier should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

This amplifier is designed for the setup of MOPA systems. Appropriate seed lasers are DFB lasers of the type EYP-DFB-xxxx-xxxx-1500-BFY12-000x with matching wavelengths. An external fiber isolator should be used between seed laser and amplifier in order to suppress backreflections that may disturb the emission spectrum of the seed laser and may cause mode-hops in case of wavelength tuning.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each tapered amplifier will come with an individual test protocol verifying the parameters given in this document.

This data sheet is subject to change without notice. © eagleyard Photonics

2022-01-10