TOPTICA

EYP-RWL-0808-00800-4000-BFW09-0000

Revision 1.00

SINGLE MODE LASER DIODES Fabry-Perot Laser

General Product Information

Application
Metrology

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T _S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Operational Temperature at Laser Chip	T_LD	°C	10		40
Forward Current	I _F	А			1.6
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			900
TEC Current	I_{TEC}	Α			1.5
TEC Voltage	V_{TEC}	V			5.5

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings can cause permanent damage to the device. Do not exceed the maximum optical output power or maximum forward current, whichever occurs first.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	0		40
Operational Temperature at Laser Chip	T_{LD}	°C	20	25	30
Forward Current	I _F	Α		1.0	1.5
Output Power	P_{opt}	mW			800

Characteristics at T_{LD} = 25° C at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	796	808	816
Spectral Width (FWHM)	$\Delta\lambda$	nm		1	3
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.28	
Threshold Current	I_{th}	А			0.3
Output Power @ $I_F = 1.5 A$	P _{opt}	mW	800		

Measurement Conditions / Comment	S
----------------------------------	---

 $P_{\rm opt} = 800$ mW, multi mode emission

info@amstechnologies.com www.amstechnologies-webshop.com

Revision 1.00

SINGLE MODE LASER DIODES Fabry-Perot Laser

Characteristics at T_{LD} = 25° C at Begin Of Life

Symbol	Unit	min	typ	max
$\Theta_{ }$	0		0.1	0.15
Θ_{\perp}	0		0.1	0.15
Θ_{\perp} / $\Theta_{ }$		0.66		1.5
d	mm		1	1.5
d_\perp	mm		1	1.5
$d_{ }/d_{\perp}$		0.66		1.5
M^2			1.2	1.5
DOP	%		90	
	Θ_{\perp} $\Theta_{\perp} / \Theta_{ }$ $d_{ }$ d_{\perp} $d_{ } / d_{\perp}$ M^{2}	$\begin{array}{ccc} \Theta_{ } & \circ & \\ \Theta_{\perp} / \Theta_{ } & \\ d_{ } & mm \\ d_{\perp} & mm \\ d_{ } / d_{\perp} & \\ M^2 & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ull angle, para	llel to base plate (see p. 3)
full angle, perp	endicular to base plate (see p. 3)
parallel to base	e plate (see p. 3)
	to base plate (see p. 3)
E field perpend	icular to base plate (see p. 3)

Revision 1.00

SINGLE MODE LASER DIODES Fabry-Perot Laser

Thermistor (Standard NTC Type)

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon}	μΑ	10	7.	1000

Measurement Conditions / Comments
$U_R = 5 \text{ V; } P_{opt} = 800 \text{ mW}$

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А	0.3	0.9	1.5
Voltage	U_TEC	V	1.0	4	5.5
Power Dissipation (total loss at case)	P _{loss}	W	1.8	2.1	2.5
Temperature Difference	ΔΤ	K			30

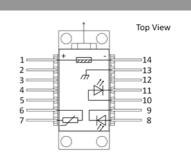
Measurement Conditions / Comme	nts
Popt = 800 mW, $\Delta T = 30 \text{ K}$	
$P_{opt} = 800 \text{ mW}, \Delta T = 30 \text{ K}$	
$P_{opt} = 800 \text{ mW}, \Delta T = 30 \text{ K}$	
$P_{opt} = 800 \text{ mW}, \ \Delta T = I \ T_{case} - T_{LD} \ I$	

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient	А			1.1293 x 10 ⁻¹	3
Steinhart & Hart Coefficient	В		2	2.3410 x 10	4
Steinhart & Hart Coefficient	С		8	3.7755 x 10 ⁻¹	8

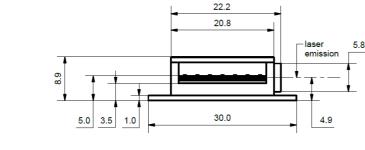
Measurement Conditions / Comments		
T = 25° C		
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)}$ at $T = 0^{\circ} \dots 50^{\circ} C$		
$1/T = A + B(\ln R) + C(\ln R)^3$		
T: temperature in Kelvin		
R: resistance at T im Ohm		

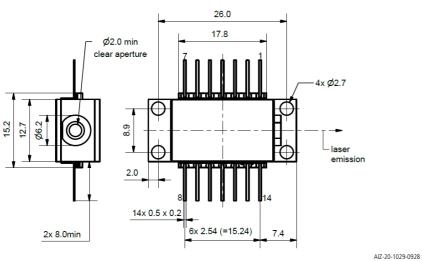
Revision 1.00

SINGLE MODE LASER DIODES Fabry-Perot Laser


Package	e D	imer	nsion	S

Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h _{EP}	mm		4.9	


Measurement Conditions / Comments

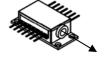

Package Pinout

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	not connected	13	Case
3	not connected	12	not connected
4	not connected	11	Laser Diode (Cathode)
5	not connected	10	Laser Diode (Anode)
6	Thermistor	9	Photodiode (Anode)
7	Thermistor	8	Photodiode (Cathode)

Package Drawings

Polarization:

E field perpendicular to base plate


Revision 1.00

SINGLE MODE LASER DIODES **Fabry-Perot Laser**

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

Laser Emission

Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

vith 21 CFR 1040.10 and 1040.40

